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Instituting a military standard for quantified uncertainty metadata represents a solution to the 
problems inherent in using artificial intelligence/machine learning (AI/ML) for military 
advantage. By provisioning for metadata now, the Department of Defense can continue to de-
termine the best policy for using AI/ML in parallel with capability development. This coordi-
nation will prevent delays in solving difficult technical problems associated with implementing 
AI/ML in warfighting systems. Uncertainty quantification can enable a practical digital imple-
mentation of the observe, orient, decide, and act loop, addressing ethical issues with employing 
AI/ML in war and optimizing investment in research and development.

F oundationally, the US military does not need artificial intelligence/machine 
learning (AI/ML). Yet the military needs to be able to observe, orient, decide, and 
act (OODA) faster—and better—than an adversary to achieve military advan-

tage.1 Machines have the capacity to observe, orient, decide, and act at a faster pace 
than humans and thus enable this advantage. The debate remains open, however, on the 
appropriateness of allowing AI or ML models to “decide” on the best course of military 
action, when that decision may result in destruction and death.

The potential pitfalls of utilizing AI/ML for military advantage have been propounded 
ad nauseam.2 Three issues remain the most concerning: (1) addressing the moral and 
ethical considerations for giving an AI the authority to destroy things and people; (2) bal-
ancing the cost versus military utility of developing AI/ML capability; and (3) ensuring

1.  John R. Boyd, “Patterns of Conflict,” in A Discourse on Winning and Losing, ed. Grant T. Hammond 
(Maxwell AFB, AL: Air University Press, March 2018).

2.  Arif Ali Khan et al., “Ethics of AI: A Systematic Literature Review of Principles and Challenges,” in 
Proceedings of the International Conference on Evaluation and Assessment in Software Engineering 2022 (New 
York: Association for Computing Machinery, June 2022), https://doi.org/; Avi Goldfarb and Jon R. Lindsay, 
“Prediction and Judgment: Why Artificial Intelligence Increases the Importance of Humans in War,” Inter-
national Security 46, no. 3 (Winter 2021–22): 7, https://direct.mit.edu/; Nick Starck, David Bierbrauer, and 
Paul Maxwell, “Artificial Intelligence, Real Risks: Understanding—and Mitigating—Vulnerabilities in the 
Military Use of AI,” in Compete and Win: Envisioning a Competitive Strategy for the Twenty-First Century, 
Competition in Cyberspace Project, Army Cyber Institute and the Modern War Institute, January 18, 2022, 
https://mwi.usma.edu/; and Emre Kazim and Adriano Soares Koshiyama, “A High-Level Overview of AI 
Ethics,” Patterns 2, no. 9 (September 2021), https://doi.org/.
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an appropriate level of trust in a machine to make optimal use of the investment into the 
AI/ML components of capability development. Nevertheless, uncertainty quantification 
(UQ) included as metadata to military information can address these three pitfalls while 
adhering to DoD ethical principles for artificial intelligence.

The DoD artificial intelligence strategy prioritizes and incentivizes the maturation of 
AI/ML technology.3 The result has been a flurry of activity attempting to expeditiously 
implement capability, accompanied by minimal planning for sustainability of capability 
growth or the higher-order implications for use of AI/ML. As one defense researcher has 
observed, “When technological change is driven more by hubris and ideology than by 
scientific understanding, the institutions that traditionally moderate these forces, such as 
democratic oversight and the rule of law, can be eroded in pursuit of the next false dawn.”4

The Defense Advanced Research Projects Agency argues that current AI/ML systems 
“lack the necessary mathematical framework” to provide assurance in use, which impedes 
their “broad deployment and adoption for critical defense situations or capabilities.”5 
Assurance requires confidence, and confidence requires minimal uncertainty. Such assur-
ance in systems using AI/ML can help address ethical considerations, provide insight 
into the cost of development versus utility, and allow the locus of responsibility for its use 
in war to remain with commanders and operators at the lowest possible echelon.

By implementing a military standard for uncertainty quantification in AI/ML systems, 
the Defense Department can secure the much-needed trust in those systems. Further, 
there are feasible ways to apply existing mathematical approaches for uncertainty deter-
mination and propagation if the Department makes UQ a requirement for developers. 
Yet as the military applies this standard to information, it must bear in mind the higher-
order effects and challenges of uncertainty quantification.

Uncertainty Quantification for AI/ML
To address the three pitfalls mentioned above, uncertainty quantification should be 

required within and by any military digital system. Uncertainty quantification, which is 
the process of assigning some number(s) to the imperfect or unknown information in a 
system, will allow a machine to express in real time how unsure it is, adding critical 
transparency for building trust in its use. The Department of Defense should implement 
a military standard that specifies the quantification of uncertainty tagged as metadata to 
each data or piece of information available in digital systems. Once available, these 

3.  Department of Defense (DoD), Summary of the Department of Defense Artificial Intelligence Strategy: 
Harnessing AI to Advance Our Security and Prosperity (Washington, DC: DoD, February 2019), https://media 
.defense.gov/.

4.  Zac Rogers, “Have Strategists Drunk the ‘AI Race’ Kool-Aid?,” War on the Rocks, June 4, 2019, 
https://warontherocks.com/.

5.  Defense Advanced Research Projects Agency (DARPA) Public Affairs, “Progressing towards Assur-
edly Safer Autonomous Systems,” DARPA, January 29, 2020, https://www.darpa.mil/.

https://media.defense.gov/2019/Feb/12/2002088963/-1/-1/1/SUMMARY-OF-DOD-AI-STRATEGY.PDF
https://media.defense.gov/2019/Feb/12/2002088963/-1/-1/1/SUMMARY-OF-DOD-AI-STRATEGY.PDF
https://warontherocks.com/2019/06/have-strategists-drunk-the-ai-race-kool-aid/
https://www.darpa.mil/news-events/2020-01-29
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metadata can be propagated to higher levels of information usage through functional 
relationships, providing an AI or ML model the information needed to always express 
how confident it is in its output.

Understanding UQ as metadata requires understanding foundational concepts in 
metrology—the science of weights and measures—related to measurement uncertainty. 
That is, a measurement has two components: 1) a numerical value which is the best esti-
mate of the quantity being measured, and 2) a measure of the uncertainty associated with 
this estimated value.

Of note, the 2008 International Organization for Standardization (ISO) Guide to the 
Expression of Uncertainty in Measurements defines the difference between measurement 
uncertainty and measurement error. These terms are not synonymous: “The ± (plus or 
minus) symbol that often follows the reported value of a measurand [the quantity being 
measured] and the numerical quantity that follows this symbol, indicate the uncer-
tainty associated with the particular measurand and not the error. An error is the dis-
crepancy between a measured value and the actual or true value. Uncertainty is the 
effect of many errors.”6

In military parlance, a “measurement” is any information collected and used during an 
OODA loop. Each piece of information has been measured by a sensor of some sort and 
will have some uncertainty associated with it. Uncertainty quantification as metadata will 
take at least two forms: empirically generated measurement uncertainty (based on the 
metrology standards outlined above) and statistically postulated uncertainty (determined 
by some means, of which there are many).7

An operator can use the system-reported uncertainty to inform their tactical decision 
when using a UQ-capable system. Commanders can set predefined levels of trust needed 
for various categories of military action at the operational or even strategic level using 
such systems, which can help operators understand what their authorities are when using 
an AI or ML model. This would also help acquisition professionals make appropriate 
investment decisions for AI/ML capability development because it would quantify as-
pects of utility. Moreover, providing quantified minimum levels of certainty required in 
systems using AI/ML addresses the three pitfalls discussed above.

In terms of the moral and ethical concerns of using AI, there is no single right answer 
to the question “Is it moral or ethical to allow an AI or ML model to decide on a military 
course of action that will result in destruction and death?” As with all moral and ethical 
debates, dealing in absolutes is impossible.

6.  Ian Farrance and Robert Frenkel, “Uncertainty of Measurement: A Review of the Rules for Calculat-
ing Uncertainty Components through Functional Relationships,” Clinical Biochemist Reviews 33, no. 2 
(2012): 50–51.

7.  Moloud Abdar et al., “A Review of Uncertainty Quantification (UQ) in Deep Learning: Techniques, 
Applications, and Challenges,” Information Fusion 76 (December 2021), https://doi.org/; and Apostolos 
Psaros et al., “Uncertainty Quantification in Scientific Machine Learning: Methods, Metrics, and Compari-
sons,” Journal of Computational Physics 477 (March 15, 2023), https://arxiv.org/.
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Consequently, the Department of Defense should categorize military actions into one of 
the three well-known relative degrees of machine autonomy: things a machine can never do 
by itself, things a machine can sometimes or partially do by itself, or things a machine can 
always do by itself. The Department of Defense then can define a minimum level of cer-
tainty as a boundary condition for each of these categories and/or can define minimum 
levels of certainty needed for specific actions. The criticality of the decision or action will 
drive the determination of a UQ boundary. Using uncertainty quantification embraces the 
nuance and ambiguity in addressing ethical considerations for systems using AI/ML.

When it comes to balancing the cost of artificial intelligence/machine learning with its 
use, the Department of Defense’s fiduciary responsibility is to ensure the investment in 
AI/ML development is proportional to its military utility. There is no purpose in develop-
ing and procuring a battalion of fully autonomous killer droids if AI/ML policy prohibits 
the US military from allowing an AI to decide to destroy something or kill someone. 
Therefore, predefined minimum uncertainty boundaries will allow acquisition profession-
als to determine how best to spend limited resources for the greatest return on investment.

Optimizing trust in AI/ML during capability development will require safeguards 
against widespread inexperience in AI/ML acquisition and the relative juvenility of the 
science of uncertainty quantification in machine learning. “Uncertainty is fundamental to 
the field of machine learning, yet it is one of the aspects that causes the most difficulty for 
beginners, especially those coming from a developer background.”8 All aspects of system 
development should include metadata tags for uncertainty quantification, whether the 
system is intended to be used autonomously or not.

These outputs might be rolled up into a higher-level digital capability that will then 
require the UQ data to calculate uncertainty propagation. For example, an F-16 main-
tainer’s fault code reader should have uncertainty quantification metadata tagged to each 
fault reading, providing this quantification at the source. The reader itself is not intended 
to incorporate AI or a machine-learning model, and that data may not be used immedi-
ately in an AI/ML application, but the fault data might be compiled with fleet-wide fault 
data and submitted to an external ML model that forecasts depot-level maintenance 
trends. The metadata would follow that set of digital information through any level of 
compilation or higher-order use.

Requiring uncertainty quantification metadata as a military standard achieves the intent 
of the Secretary of Defense’s ethical principles for artificial intelligence that encompass 
five major areas:9

•  Responsible: UQ informs judgment and provides the empirical basis for developing, 
deploying, and using AI capabilities.

8.  Jason Brownlee, “A Gentle Introduction to Uncertainty in Machine Learning,” Machine Learning 
Mastery, last updated September 25, 2019, https://machinelearningmastery.com/.

9.  DoD, “DOD Adopts Ethical Principles for Artificial Intelligence,” press release, February 24, 2020, 
https://www.defense.gov/.

https://machinelearningmastery.com/uncertainty-in-machine-learning/
https://www.defense.gov/News/Releases/Release/Article/2091996/dod-adopts-ethical-principles-for-artificial-intelligence/
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•  Equitable: Bias in AI can be measured in the same way that uncertainty is and is based 
on many of the same statistical principles.10 Bias can then be addressed and improved.

•  Traceable: Requiring uncertainty metadata at every level enables traceability in assur-
ance. Performance issues in machines can be traced back to the culpable component.

•  Reliable: UQ allows inspection by developers and allows targeted improvement of 
the most egregious input factors.

•  Governable: UQ as boundary conditions for autonomy trust levels can be used to 
define guidelines for fulfilling intended functions and avoiding unintended conse-
quences.

These ethical principles were adopted to ensure the Department of Defense continues 
to uphold the highest ethical standards while embracing the integration of artificial intel-
ligence as a disruptive technology. Uncertainty quantification is a practical way to achieve 
that goal.

Building Trust in AI/ML
A study by RAND found trust is the root cause of most concerns related to the mili-

tary use of AI/ML.11 Department of Defense researchers note that “when it comes to 
forming effective teams of humans and autonomous systems, humans need timely and 
accurate insights about their machine partners’ skills, experience, and reliability to trust 
them in dynamic environments.”12 For many autonomous systems, their “lack of aware-
ness of their own competence and their inability to communicate it to their human part-
ners reduce trust and undermine team effectiveness.”13

Trust in the AI/ML model is fundamentally based on the certainty humans have in 
the information, whether it be a simple sensor output or the overall competency of an 
autonomous weapon system. This is supported by MITRE Corporation studies:

AI adopters often ask about ways to increase trust in the AI. The solution is not 
for us to build systems that people trust completely, or for users only to accept 
systems that never err. Instead, lessons point to the importance of forming good 
partnerships based on evidence and perception. Good partnerships help humans 
understand the AI’s abilities and intents, believe that the AI will work as antici-

10.  V. Ashley Villar and Michael Little, “Technical Memorandum: Focus Area 3—Uncertainty and 
Bias,” in NASA SMD AI Workshop Report, ed. Manil Maskey (Washington, DC: National Aeronautics and 
Space Administration, September 2021).

11.  Forrest E. Morgan et al., Military Applications of Artificial Intelligence: Ethical Concerns in an Uncertain 
World (Santa Monica, CA: RAND Corporation, 2020), https://www.rand.org/.

12.  DARPA Public Affairs, “Building Trusted Human-Machine Partnerships,” DARPA, January 31, 
2019, https://www.darpa.mil/.

13.  DARPA Public Affairs, “Human-Machine Partnerships.”

https://www.rand.org/pubs/research_reports/RR3139-1.html
https://www.darpa.mil/news-events/2019-01-31
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pated, and rely on the AI to the appropriate degree. Then stakeholders can cali-
brate their trust and weigh the potential consequences of the AI’s decisions before 
granting appropriate authorities to the AI.14

By thinking of machines—digital or physical—as partners, the military can make 
analogies to confidence-building techniques with human partners. Sound partnership 
requires effective two-way communication and a system to reinforce collaboration.15 Ipso 
facto, a measure of uncertainty in the digital system output is not useful unless that un-
certainty can be conveyed to the human partner. Once machines can quantify uncertainty 
and can communicate that quantification, they also enable the evaluation of the output 
and improvement of the system.

Real-time feedback of a machine’s awareness of its own competence will increase 
transparency into the machine’s observe, orient, and decide functions by providing quan-
tification of the uncertainty in each of those loops. This feedback improves trust in that 
specific system and enables quantification of trust in systems-of-systems via uncertainty 
propagation. For example, consider remotely piloted aircraft (RPA) video surveillance of 
a potential target. How certain is it that an RPA sensor is accurate and calibrated, that the 
video stream has not been compromised, and/or that the operator has been given sound 
baseline intelligence on where to point the sensor in the first place?

Each of these components of the OODA loop has some associated uncertainty that 
can and should be quantified so that it can be mathematically propagated to the level of 
decision-making. In this scenario, it would result in a propagated certainty of x percent 
that the target is correct, giving the mission commander confidence in their situational 
awareness (observation), and allowing them to orient better and decide faster on whether 
to engage or not.

By quantifying uncertainty and using it in tandem with predefined levels of confi-
dence needed for various categories of action, decisionmakers can create boundary con-
ditions around those military actions that have little to no moral implications as well as 
those that have serious moral implications. Defense senior leaders can also set thresholds 
for proportional investment in developing and applying AI/ML capability and can en-
sure that investment will be used to achieve optimal military advantage. This would 
provide assurance in a system using AI/ML through a “quantify–evaluate–improve–
communicate” cycle.16

Uncertainty quantification allows setting if-then relationships for bounding the allow-
able space of actions for a machine. In another abbreviated example, a space domain 

14.  Jonathan Rotner, Ron Hodge, and Lura Danley, AI Fails and How We Can Learn from Them (McLean, 
VA: MITRE Corporation, July 2020), 43, https://sites.mitre.org/; and see also Andrew Lacher, Robert 
Grabowsky, and Steve Cook, “A Framework for Discussing Trust in Increasingly Autonomous Systems,” 
MITRE Corporation, updated June 2017, https://www.mitre.org/.

15.  Rotner, Hodge, and Danley, AI Fails, 43.
16.  Soumya Ghosh et al., “Uncertainty Quantification 360: A Holistic Toolkit for Quantifying and 

Communicating the Uncertainty of AI,” arXiv, June 2021, https://arxiv.org/.

https://sites.mitre.org/aifails/wp-content/uploads/sites/15/2021/02/AI-Fails-and-How-We-Can-Learn-from-Them-MITRE-2020.pdf
https://www.mitre.org/sites/default/files/publications/17-2432-framework-discussing-trust-increasingly-autonomous-systems.pdf
https://arxiv.org/abs/2106.01410
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awareness mission may use infrared sensor data to identify space vehicles. The if-then 
relationship may look like this: If a sensor data-to-target correlation model has a certainty 
greater than 95 percent, then that target identification information can be automatically 
updated in the National Space Defense Center catalog. If a sensor data-to-target correla-
tion model has a certainty greater than 75 percent but less than 95 percent, then the 
machine can attempt a match to signals intelligence (SIGINT) with a certainty greater 
than 75 percent, or it can send the information to a human to verify.

Using quantified uncertainty thus allows commanders to root decision trees in parame-
ters usable by AI/ML models and to guide how those AI/ML models may be used. In 
considering the three relative degrees of machine autonomy, commanders can predefine 
levels of uncertainty for the inputs to each of these categories of action as guidelines for 
when and under what circumstances it makes sense to let a machine decide, clearly defin-
ing the rules of engagement for using an AI or ML model.

All weapon systems, whether intended to incorporate autonomy or not, should pro-
vide uncertainty metadata within their planned user interface. Knowing the uncertainty 
of all inputs benefits conventional weapon systems users as much as applications of AI/ML. 
By provisioning for metadata now, DoD senior leaders can continue determining the best 
governance and policy for using AI/ML without slowing down technical and engineer-
ing development. Any such governance can be implemented in the future by referencing 
the quantified uncertainty within a system at the component level or at the output level.

Mathematical Implementation
Applying uncertainty quantification and propagation to tightening the OODA loop 

assumes functional relationships can be used to define military situations. Functional 
relationships are the best mathematical approach for this application because it can gen-
erally be shown that a cause-effect relationship exists between the value of the function 
and the input variables, without specifically identifying the exact mathematical form of 
the relationship. By assuming these functional relationships exist, a general equation 
which describes the propagation of uncertainty can be used.17

A generic functional relationship with uncertainty terms looks like:
y ± u(y) = f (x₁ ± u₁, x₂ ± u₂, x₃ ± u₃, ... , xn ± un)

where y is the output, u(y) is the uncertainty of that output, and there are n input variables 
with associated uncertainties that affect that output. This shows that y depends on n input 
variables, and in the style of “imprecise probabilists,” that the exact value of y is within the 
interval y + u(y) to y – u(y).18

17.  Farrance and Frenkel, “Uncertainty of Measurement.”
18.  Barry N. Taylor and Chris E. Kuyatt, National Institute of Standards and Technology (NIST) Tech-

nical Note 1297, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results,  
1994 ed. (Gaithersburg, MD: NIST, September 1994); and T. J. Sullivan, Introduction to Uncertainty 
Quantification (Cham, Switzerland: Springer Cham, 2015), 31.
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This direct application of ideas intended to improve medical laboratory research per-
tains to military decision-making as well. “Uncertainty associated with any measurement 
and its propagation through a defined functional relationship can be evaluated by dif-
ferentiation (partial differentiation) and the application of the general equation for the 
propagation of uncertainty.”19 These mathematical approaches would capture the change 
in uncertainty as many measurands change in a very complex system. This uncertainty 
propagation equation can be derived using standard statistical procedures, and most im-
portantly, it is independent of the exact form of the functional relationship.20

Those more versed in statistics are invited to submit this approach to further case study 
and determine the feasibility of calculating propagated uncertainty at very large system-
of-systems levels when many input variables need to be included. It has already been 
shown that “the more complex the problem, the more costly it is to obtain calibrated 
uncertainty estimates.”21 This approach is probably feasible through operational level 
AI/ML models (i.e., engagements involving a wing or battalion), but a higher-level 
strategic propagation of uncertainty (i.e., campaign-level models including political-
economic or nuclear factors) may require an infeasible amount of computing power to 
calculate in real time.

Propagation of measurement uncertainty through a machine learning model as part of 
the input data set is less common than using statistical methods to estimate uncertainty 
within the model. Data scientists and AI researchers will be familiar with the mass of 
studies focused on postulating uncertainty within machine learning models, but much of 
the historical work does not take an approach of adjusting epistemic uncertainty—an 
insufficient amount of training data for an ML model—with measurement uncertainty 
in the training data set.22

Uncertainty of measurement can be thought of as noise in data and/or variability in 
the observation. Other aspects of uncertainty need to be quantified when implementing 
uncertainty quantification in digital systems, such as the completeness of the coverage of 
the domain, which is the representativeness of the input data set, and the imperfect 
modeling of the military problem, which is the result of incorrect baseline assumptions 
during model development and is ultimately rooted in imperfections in human judgment.23

A more modern approach to propagation that may be less computationally intensive 
may be to use machine learning to postulate uncertainty. Evidence from other disciplines 
using neural networks shows the inclusion of known input data uncertainty “is advanta-

19.  Farrance and Frenkel, “Uncertainty of Measurement,” 61.
20.  Farrance and Frenkel.
21.  Umang Bhatt et al., “Uncertainty as a Form of Transparency: Measuring, Communicating, and Using 

Uncertainty,” in AIES ‘21: Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society (New York: 
Association for Computing Machinery, July 30, 2021), 2.4 “Uncertainty Evaluation,” https://arxiv.org/.

22.  Abdar et al., “UQ in Deep Learning”; and Psaros et al., “UQ in ML.”
23.  Brownlee, “Gentle Introduction.”

https://arxiv.org/pdf/2011.07586.pdf
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geous for making better predictions compared to the case of not using them.”24 These 
researchers also suggest further investigation into using known input data uncertainty “as 
the initial values of the uncertainties to be derived” in a Bayesian deep-learning frame-
work, which would be a way to propagate empirical uncertainty in concert with statisti-
cally derived uncertainty.25

Using the mathematical approach to uncertainty propagation will incorporate and 
account for the effects of aleatoric uncertainty—the inherent randomness of data that 
cannot be explained—and epistemic uncertainty. The proposed military standard should 
enfold the requirement for measurement uncertainty with the requirement of its propa-
gation into higher-order uses, such as machine learning or more abstract modeling and 
simulation. In military parlance, standardizing UQ by this approach will account for not 
just the baseline observational data uncertainty, but also data uncertainty related to ori-
entation and action.

Math for Military Utility
To continue the analogy to military strategy, a functional relationship describes how 

military advantage is gained in the OODA loop, and how uncertainty propagates in 
that process.

Desired Military Effect ± Uncertainty Success = f [observation (many variables ± u),
orientation (some variables ± u),
speed of decision ± u
speed of action ± u]

In this purposely emblematic equation, observation and orientation are constant ac-
tivities, while decisions and actions are discrete events in time. Probability of success of 
the desired military effect is based on the propagation of uncertainty of each of the input 
variables in the loop: how certain is the operator that (a) their observations capture reality, 
(b) they are orienting in the manner intended, (c) their decision was executed the way 
intended, and (d) their action has not been disrupted.

The barrier to this approach is that it requires prior knowledge of uncertainties, which 
is metadata that is currently not available because it is generally costly to determine in the 
empirical case, and because there are many acceptable methods for its generation in the 

24.  M. Kiani Shahvandi and Benedikt Soja, “Inclusion of Data Uncertainty in Machine Learning and Its 
Application in Geodetic Data Science, with Case Studies for the Prediction of Earth Orientation Parameters 
and GNSS Station Coordinate Time Series,” Advances in Space Research 70, no. 3 (August 2022): 573, https://
doi.org/; and see also Wojciech M. Czarnecki and Igor T. Podolak, “Machine Learning with Known Input 
Data Uncertainty Measure,” in Computer Information Systems and Industrial Management: 12th IFIP TC8 
International Conference, CISIM 2013, Krakow, Poland, September 25–27, 2013, Proceedings, ed. Khalid Saeed 
et al. (Heidelberg, Germany: Springer Berlin, 2013), 379.

25.  Shahvandi and Soja.

https://doi.org/10.1016/j.asr.2022.05.042
https://doi.org/10.1016/j.asr.2022.05.042
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statistical case. This circles back to the recommended solution of levying the requirement 
and a standard to provide the uncertainties related to each of the input variables as meta-
data. Once provided, AI/ML systems that compile observational and orientation data 
can use the metadata for propagation and provide an operator or commander with the 
overarching quantified uncertainty in the situational picture. When used in real time, this 
approach intrinsically captures facets of the decision and action steps of the OODA loop.

Higher-Order Effects and Challenges
Fairness in modeling is a well-known issue in the realm of AI/ML capability develop-

ment, and a large body of work is aimed at ensuring this. Realistically, machines can assist 
in determining the bias in models by using quantified uncertainty, but a model is only as 
good as its inputs, and a human will be responsible for determining what those inputs 
are.26 Models are “only proxies for the real world and their learning and inference algo-
rithms rely on various simplifying assumptions and thus introduce modeling and infer-
ential uncertainties.”27 Simplistically, the root cause of the uncertainty related to the 
truthfulness and fairness of a model is based on human psychology. This is problematic 
for many reasons, but these reasons already exist within executing an OODA loop for 
military advantage and are not exclusive to using UQ or digital information.

Computers are deterministic in that a developer writes a program and “the computer 
does what [they] say.”28 If a program is based on bad assumptions, a bad result is not the 
computer’s fault. Trying to quantify how good or bad baseline model assumptions are 
would still be a problem within this larger UQ framework. This component of uncer-
tainty could be based on any combination of judgment factors during development, such 
as the choice and preparation of data, choice of training hyperparameters, and the choice 
of omission. Quantifying uncertainty will only help with fairness in AI/ML models by 
allowing inspection; it does not necessarily make an AI or ML model fairer.

There are statistical approaches to creating fairness metrics using UQ that can be used 
to improve models, but the approaches still require human assumptions and decisions in 
development. Providing uncertainty quantification would allow inspection, and that is 
the first step needed for improving input assumptions, bias, and output.

Choosing the appropriate mathematical formulae for calculating propagation of un-
certainty in a functional relationship requires some baseline assumptions to build the best 
representation of the partial differential terms. The functional relationship and resulting 
mapping function may be ambiguous as a result of epistemic uncertainty.29 Determining 

26.  Bhatt et al., “Form of Transparency”; and Tongfei Chen et al., “Confidence Scoring Using Whitebox 
Meta-Models with Linear Classifier Probes,” Proceedings of Machine Learning Research (PMLR) 89 (2019).

27.  Ghosh et al., “UQ 360,” 1–2.
28.  Brownlee, “Gentle Introduction.”
29.  Bhatt et al., “Form of Transparency.”
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the correct formulae for uncertainty propagation requires further study, but this challenge 
does not diminish the value in implementing a UQ military standard.

One analysis has shown that communicating and visualizing uncertainty information 
to operators of unmanned vehicles helped improve human-AI team performance.30 But 
other AI researchers have also shown that “more research is needed into how to best 
capture and present the developer’s [uncertainty quantification] in such a way that is 
meaningful for the user.” They further state, “Giving users seeming control over aspects 
they don’t understand has the potential to give the illusions of clarity and informed con-
trol, cause additional automation bias, or simply allow the user to select an option that 
gives them the answer they want.”31 This finding moves solidly into the body of work on 
decision theory and psychology. There are statistical approaches that attempt to algorithmi-
cally define judgment and decision-making, and there are risks to using those approaches.32

A separate analysis provides relevant conclusions from the judgment and decision-
making literature that pertain to using uncertainty estimates in decision-making. The 
study concludes that delivering uncertainty estimates to stakeholders can enhance trans-
parency by ensuring trust formation.33 A key consideration that the authors cover is the 
way in which UQ is communicated to stakeholders: “Even well-calibrated uncertainty 
estimates could be perceived inaccurately by people because (a) they have varying levels 
of understanding about probability and statistics, and (b) human perception of uncer-
tainty quantities is often biased by decision-making heuristics.”34

The authors further add that “both lay people and experts rely on mental shortcuts, or 
heuristics, to interpret uncertainty” and that this “could lead to biased appraisals of uncer-
tainty even if model outputs are well-calibrated.”35 Unsurprisingly, key takeaways on this 
subject are that chosen methods of UQ communication should be tested first with stake-
holders, and that developers should cater their UQ display and user interfaces to different 
end-user types.36 For example, the presentation of uncertainty quantification to a data 
scientist should be different than the presentation of UQ to an operator for wartime 
decision-making. The Intelligence Community has a long history of determining the 
optimal method of communicating uncertainty related to military information, so its 
conventions for “words of estimative probability” may be an appropriate point of depar-
ture for the latter type of end user.

30.  Kimberly Stowers et al., “Insights into Human-Agent Teaming: Intelligent Agent Transparency and 
Uncertainty,” in Advances in Human Robots and Unmanned Systems: Proceedings of the AHFE 2016 International 
Conference on Human Factors in Robots and Unmanned Systems, July 27–31, 2016, Walt Disney World, Florida, 
ed. Pamela Savage-Knepshield and Jessie Chen (Cham, Switzerland: Springer Cham, 2017).

31.  Rotner, Hodge, and Danley, AI Fails, 44.
32.  Bhatt et al., “Form of Transparency.”
33.  Bhatt et al., under “4 Communicating Uncertainty.”
34.  Bhatt et al.
35.  Bhatt et al., under “3.2 Uncertainty and Decision-making”; and see also Amos Tversky and Daniel 

Kahneman, “Judgment under Uncertainty: Heuristics and Biases,” Science 185, no. 4157 (1974).
36.  Bhatt et al.
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When thinking of using propagated uncertainty at operational and strategic decision-
making levels, there is a chance that using propagation calculations may make UQ numbers 
irrelevant and unusable because uncertainty approaches 100 percent of the desired output 
in very complex systems. Incidentally, this is an interesting conclusion that may point to 
a mathematical proof of the “fog of war.” Further investigation into calculating propagated 
uncertainty at very large system-of-systems levels may better illuminate this conclusion.

Yet this potential shortfall of the benefits of highly propagated UQ is not a strong 
enough refutation of implementing a UQ military standard. Including the metadata tags 
at each level allows operators to inspect what factors are contributing the most uncer-
tainty and what factors a commander can have high confidence in, which is still very 
useful information. When operator bandwidth is available outside of high-stress engage-
ments, these metadata tags allow operators to examine covariance and correlation 
between input variables in the functional relationship. These metadata can also be used 
by acquisition professionals for the evaluate-and-improve tasks, by identifying systemic 
error and eliminating it and identifying the worst offenders contributing to random error.

The potential for highly propagated UQ to be irrelevant also emphasizes the perpetual 
importance of developing sound military judgment. As in any military situation where 
uncertainty is very high, operators and commanders with acumen will be required for 
achieving military advantage. Using AI/ML to observe, orient, decide, and act faster than 
an adversary will only lead to victory if the actions are superior. This facet of the theory of 
victory is distinct from the argument for requiring, propagating, and communicating UQ 
in a standardized way.

Lastly, AI/ML requires input data that is a “suitably representative random sample of 
observations” of the domain of interest. Importantly, “in all cases, we will never have all of 
the observations,” and “there will always be some unobserved cases” within the domain of 
interest.37 Although it is more common that an AI or ML algorithm has been trained on 
an insufficient data set, attempting to achieve total observational coverage of the domain 
in a data sampling is not ideal either.38

When applying AI/ML to the OODA loop at a higher ops tempo, improving coverage 
of the domain does not necessitate more sampling, but should be achieved by more ran-
domization in the sampling with focus on determining accurate measurement uncertainty. 
The study on known input data mentioned above proved theoretically and empirically that 
incorporating data uncertainty into the learning process for a range of machine learning 
models made the models much more immune to the problem of overfitting—an un-
acceptable ML behavior that occurs when the model fits too closely to a training data set, 
resulting in inaccurate predictions when tasked to evaluate unknown data.39

37.  Brownlee, “Gentle Introduction.”
38.  John R. Boyd, “Destruction and Creation,” September 3, 1976, https://www.coljohnboyd.com/.
39.  Czarnecki and Podolak, “Known Input Data.”

https://www.coljohnboyd.com/static/documents/1976-09-03__Boyd_John_R__Destruction_and_Creation.pdf
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The problem of overfitting is not unique to machine learning and is foundationally 
caused by a deficient input data set. “Simply stated, uncertainty and related disorder can 
be diminished by the direct artifice of creating a higher and broader more general concept 
to represent reality.”40 This results in maximum statistical coverage of the domain with 
minimal intrusion on the system being observed. It also minimizes the size of the data 
and metadata set, which increases the computational efficiency of the UQ propagation 
equation in higher-order usage.

Conclusion
“We never have complete and perfect information. . . . The best way to succeed in [this am-
biguous environment] is to revel in ambiguity.”

Grant T. Hammond 41

Implementing a military standard for quantified uncertainty metadata and developing 
the capability to propagate, evaluate, improve, and communicate that information will 
provide the most flexibility for continuing to pursue AI/ML capability for military use. 
Using uncertainty quantification with AI/ML systems enables mutual trust and unity 
within human-machine teams by developing that trust through communication, trans-
parency, and participation in common experiences. Assurance in using AI/ML systems to 
achieve military objectives requires quantified uncertainty.

Tying back into concepts of military strategy, this entire framework of uncertainty 
quantification contributes to a winning organization. By provisioning for UQ metadata 
now, DoD senior leaders can continue determining best governance and policy for using 
AI/ML without delaying technical and engineering development. As warfighters use 
UQ to develop trust in AI/ML partners, the military’s ability to observe, orient, decide, 
and act faster than an adversary will increase and ensure military advantage. 

40.  Boyd, “Destruction and Creation,” 7.
41.  Grant T. Hammond, “The Essential Boyd,” American War: Rediscovering the American School of 

War (website), n. d., accessed March 6, 2023, https://americawar.wordpress.com/.
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